Metabolic enzyme expression highlights a key role for MTHFD2 and the mitochondrial folate pathway in cancer

نویسندگان

  • Roland Nilsson
  • Mohit Jain
  • Nikhil Madhusudhan
  • Nina Gustafsson Sheppard
  • Laura Strittmatter
  • Caroline Kampf
  • Jenny Huang
  • Anna Asplund
  • Vamsi K Mootha
چکیده

Metabolic remodeling is now widely regarded as a hallmark of cancer, but it is not clear whether individual metabolic strategies are frequently exploited by many tumours. Here we compare messenger RNA profiles of 1,454 metabolic enzymes across 1,981 tumours spanning 19 cancer types to identify enzymes that are consistently differentially expressed. Our meta-analysis recovers established targets of some of the most widely used chemotherapeutics, including dihydrofolate reductase, thymidylate synthase and ribonucleotide reductase, while also spotlighting new enzymes, such as the mitochondrial proline biosynthetic enzyme PYCR1. The highest scoring pathway is mitochondrial one-carbon metabolism and is centred on MTHFD2. MTHFD2 RNA and protein are markedly elevated in many cancers and correlated with poor survival in breast cancer. MTHFD2 is expressed in the developing embryo, but is absent in most healthy adult tissues, even those that are proliferating. Our study highlights the importance of mitochondrial compartmentalization of one-carbon metabolism in cancer and raises important therapeutic hypotheses.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Human mitochondrial MTHFD2 is a dual redox cofactor-specific methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase

Background Folate-dependent one-carbon metabolism provides one-carbon units for several biological processes. This pathway is highly compartmentalized in eukaryotes, with the mitochondrial pathway producing formate for use in cytoplasmic processes. The mitochondrial enzyme MTHFD2 has been reported to use NAD+ as a cofactor while the isozyme MTHFD2L utilizes NAD+ or NADP+ at physiologically rele...

متن کامل

Mitochondrial Methylenetetrahydrofolate Dehydrogenase (MTHFD2) Overexpression Is Associated with Tumor Cell Proliferation and Is a Novel Target for Drug Development.

Rapidly proliferating tumors attempt to meet the demands for nucleotide biosynthesis by upregulating folate pathways that provide the building blocks for pyrimidine and purine biosynthesis. In particular, the key role of mitochondrial folate enzymes in providing formate for de novo purine synthesis and for providing the one-carbon moiety for thymidylate synthesis has been recognized in recent s...

متن کامل

The folate-coupled enzyme MTHFD2 is a nuclear protein and promotes cell proliferation

Folate metabolism is central to cell proliferation and a target of commonly used cancer chemotherapeutics. In particular, the mitochondrial folate-coupled metabolism is thought to be important for proliferating cancer cells. The enzyme MTHFD2 in this pathway is highly expressed in human tumors and broadly required for survival of cancer cells. Although the enzymatic activity of the MTHFD2 prote...

متن کامل

MTHFD2- a new twist?

Rapidly proliferating tumors attempt to meet the demands for nucleotide biosynthesis by up-regulating folate pathways that provide the building blocks for pyrimidine and purine biosynthesis. Reduced folates are carriers of one carbon units required for the synthesis of purines, thymidylate and methionine, derived from serine, glycine and formate. As folate metabolism plays a key role in cell pr...

متن کامل

Suppression of MTHFD2 in MCF-7 Breast Cancer Cells Increases Glycolysis, Dependency on Exogenous Glycine, and Sensitivity to Folate Depletion.

Methylenetetrahydrofolate dehydrogenase (NAD(P)+ dependent) 2, methenyltetrahydrofolate cyclohydrolase (MTHFD2) is a mitochondrial enzyme involved in folate metabolism. A number of recent studies have highlighted this enzyme as being highly expressed in many solid tumors, including breast cancer, and to be correlated with poor survival. However, the metabolic functions of MTHFD2 in cancer cells...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014